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General idea

• Success of LDPC codes in channel coding

• Seeking low density graphical codes in source coding

– Parity Source Coder: theoretically close to optimum, no good encoding

algorithm

– Nonlinear Source Coder: theoretically close to optimum, good encoding

with survey propagation



General idea

• Success of LDPC codes in channel coding

• Seeking low density graphical codes in source coding

– Parity Source Coder: theoretically close to optimum, no good encoding

algorithm

– Nonlinear Source Coder: theoretically close to optimum, good encoding

with survey propagation

• Two main issues:

– Theoretical capacity: approaching the Shannon limit

– Algorithmic performance: polynomial time encoding and decoding
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Lossy Data Compression

{y1, y2, ...yM} −−−−−→
encoding

{x1, x2...xN} −−−−−→
decoding

{y∗1, y∗2...y∗M}

ya, y
∗
a ∈ alphabet S; xi ∈ {0, 1}.

Here S = {0, 1}, and ya are iid, = 0, 1 with probability 1/2.

Rate R = N/M . Distortion D = (1/M)
∑M

i=1

(
1− δ(ya, y

∗
a)

)
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encoding

{x1, x2...xN} −−−−−→
decoding

{y∗1, y∗2...y∗M}

ya, y
∗
a ∈ alphabet S; xi ∈ {0, 1}.

Here S = {0, 1}, and ya are iid, = 0, 1 with probability 1/2.

Rate R = N/M . Distortion D = (1/M)
∑M

i=1

(
1− δ(ya, y

∗
a)

)
Shannon: the minimum achievable rate R given the distortion D is

R(D) = 1− h2(D)

3



Shannon’s bound

Uncorrelated unbiased

binary source

R(D) = 1− h2(D)

h2(·) being the binary

entropy
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General strategy

Compressed message: {x1, x2...xN}= N bits

Initial message: M symbols. → M function nodes

Example: ‘Parity Source coder’: a LDPC code for compression

M

x=( )

N

0 0 0 0 1 1 1y=( )0 1

.................
1

x
2

x  Nx
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Distortion and energy
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Encoding: y → x= Find a configuration of x which violates the smallest

number of checks. = Find a ground state.
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Distortion and energy

M

x=( )

N

0 0 0 0 1 1 1y=( )0 1
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1

x
2
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Encoding: y → x= Find a configuration of x which violates the smallest

number of checks. = Find a ground state.

Decoding: x → y∗= trivial. Example: y∗1 = x1 ⊕ x2 ⊕ x3

Distortion = number of violated checks in the encoding = ground state

energy of the encoding.
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Theoretical performance of the Parity Source Coder I

’XORSAT’ problem in combinatorial optimization, or ’p-spin’ model in

statistical physics.

Instance= { Geometry, y1, . . . , yM}. E(x) =
∑

a

[
1− δ

(
⊕i∈V (a)xi, ya

)]
SAT configuration: x with E(x) = 0. UNSAT instance: ∀x : E(x) > 0.

MAX-XORSAT: ground state energy E0 (=distortion)



Theoretical performance of the Parity Source Coder I

’XORSAT’ problem in combinatorial optimization, or ’p-spin’ model in

statistical physics.

Instance= { Geometry, y1, . . . , yM}. E(x) =
∑

a

[
1− δ

(
⊕i∈V (a)xi, ya

)]
SAT configuration: x with E(x) = 0. UNSAT instance: ∀x : E(x) > 0.

MAX-XORSAT: ground state energy E0 (=distortion)

Analytic study: “1-step RSB” cavity method (MM,Ricci-

Tersenghi,Zecchina 2002). Random K−XORSAT problem with M,N →∞
and M/N = α (= 1/R). (Function nodes: degree K. Variable nodes:

degree Poisson(Kα)). → Phase diagram, E0.
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Theoretical performance of the Parity Source Coder II
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Rapidly approaching Shannon’s bound when K increases. Optimal data

compression... in theory!
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Practical performance of the Parity Source Coder
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Encoding: y → x= Find a configuration of x which violates the smallest

number of checks. = Find a ground state. DIFFICULT!!!

Belief propagation: does not converge (NB: random initial condition,

very different from the case of LDPC codes).



Practical performance of the Parity Source Coder
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Encoding: y → x= Find a configuration of x which violates the smallest

number of checks. = Find a ground state. DIFFICULT!!!

Belief propagation: does not converge (NB: random initial condition,

very different from the case of LDPC codes).

Clusters of solutions
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Clusters in the XORSAT problem
Random parity checks (graph, ya); N,M →∞, α = M/N fixed.

With probability one:

α < αc: SAT

α > αc: UNSAT

But three phases:

Easy SAT, Hard SAT, UNSAT.

Topology of configurations with E = E0:
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Why clusters ‘kill’ belief propagation
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Belief propagation:

Pa→1(x1) =
∑

x2,x3
Ca(x1, x2, x3)P (a)(x2)P (a)(x3)

P (b)(x1) ∝
∏

a∈V (1)\b Pa→1(x1)



Why clusters ‘kill’ belief propagation

a−>1
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Belief propagation:

Pa→1(x1) =
∑

x2,x3
Ca(x1, x2, x3)P (a)(x2)P (a)(x3)

P (b)(x1) ∝
∏

a∈V (1)\b Pa→1(x1)

Basic underlying idea: P (a)(x2, x3) ∼ P (a)(x2)P (a)(x3). Correct if

1) x2, x3 distant (OK)

2) Measure restricted to one cluster (Wrong in the hard SAT phase).
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From belief propagation to survey propagation

Hard SAT phase: Message = Survey of the elementary messages in the

clusters of SAT configurations. Project: Belief → Warning → Survey

Belief Pa→i(xi), P (a)(xi) are probabilities, in [0, 1].

For each belief, e.g. Pa→i(xi), construct the warning ρa→i(xi) ∈ {0, ∗}.

ρ = I(P ) =
{

0 if Pa→i(xi) = 0
∗ if Pa→i(xi) > 0

Warning propagation: focuses on forced variables.
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From belief propagation to survey propagation

Hard SAT phase: Message = Survey of the elementary messages in the

clusters of SAT configurations. Project: Belief → Warning → Survey

Belief Pa→i(xi), P (a)(xi) are probabilities, in [0, 1].

For each belief, e.g. Pa→i(xi), construct the warning ρa→i(xi) ∈ {0, ∗}.

ρ = I(P ) =
{

0 if Pa→i(xi) = 0
∗ if Pa→i(xi) > 0

Warning propagation: focuses on forced variables.

Survey: ηa→i = probability of a warning being sent from constraint a to

variable i, when a cluster is picked up at random. Propagate the surveys

along the graph, then use them to decimate. OK in satisfiability/colouring

problem.Not in XORSAT (totally symmetric messages)...
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Nonlinear nodes

Introduce generalized function nodes, different from parity checks

• Keep theoretical performances nearly as good as in parity checks

• Break the symmetry → SP converges and allows to encode a message
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Random Nonlinear nodes
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Cavity analysis and Message Passing Algorithms

Warning propagation = hard constraint limit of belief propagation.
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Penalty when conflicting warnings

→ works also in the UNSAT phase



Cavity analysis and Message Passing Algorithms

Warning propagation = hard constraint limit of belief propagation.Survey

Propagation (SP): On each edge a → i: survey = Proba(warning), when a

cluster of ground states is chosen at random.

a 1
η =   Prob(warning) 

η
b−>2

b

a

2 3

1

ηa→1: known exactly from

ηb→2 and ηc→3.

Penalty when conflicting warnings

→ works also in the UNSAT phase

Statistical analysis → phase diagram.

Single sample → SP algorithm
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Theoretical capacity (20 types of random nodes)

0.00

0.05

0.10

0.15

0.20

0.25

1 1.2 1.4 1.6 1.8 2

g
r
o
u
n
d
 
s
t
a
t
e
 
e
n
e
r
g
y

α = 1/R

K=6

K=8

Shannon

16



Phase diagram
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Performance
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Conclusions

• New approach for lossy data compression based on low density constraint

satisfaction problems

• Theoretical capacity ≈ Shannon’s bound

• Message passing algorithms converge on CSP with non-linear nodes and

stop just above the ground state energy ⇔ approaching the Shannon’s

bound
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Conclusions

• New approach for lossy data compression based on low density constraint

satisfaction problems

• Theoretical capacity ≈ Shannon’s bound

• Message passing algorithms converge on CSP with non-linear nodes and

stop just above the ground state energy ⇔ approaching the Shannon’s

bound

• To be improved: Encoding works, but still slow (limited to N < 10000,

using general purpose SP software...

• Perspectives: Generalize this algorithm in order to compress sequences of

real numbers. Revisit nonlinear function nodes in channel coding.
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